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The Navier--Stokes and heat- and mass-transfer equations are solved numerically 
for a sphere with uniform blowing over the surface in the Reynolds number range 
up to 20. A method of refining the boundary conditions far from the sphere is 
proposed in both problems. A difference scheme from other authors is used to 
solve the hydrodynamic problem, and an explicit differencescheme with a second 
order of approximation is used for the heat problem. It is shown that blowing 
diminishes the aerodynamic drag of the sphere and the temperature or concentra- 
tion gradient at its surface, i.e., the heat- and mass-transfer intensity. 

Analytic solutions of the problems of the flow around and of the heat and mass transfer 
of a sphere with uniform blowing on the surface at Reynolds and P~clet numbers less than 
one have been obtained in [i, 2] by the method of uniting asymptotic expansions. 

This paper proposes to obtain the solution of the same problem, but by numerical methods 
and for values of the Re* criterion up to 20, which is of interest for certain high-speed 
processes, for example, for the plasmochemical reprocessing of atomized materials (here Re = 
2aU=u-1; a is the radius of the sphere, U= is the free-stream velocity, and u is the coef- 
ficient of kinematic viscosity). 

It is considered that the injected gas has the same constants as the free gas stream, 
and no chemical or phase transformations occur in the neighborhoods of the sphere. The 
influence of nonisothermy is assumed slight; hence, first the independent solution of the 
hydrodynamic problem in an isothermal flow is admissible and then of the thermal problem. 

The streamline problem reduces to solving the Navier--Stokes and continuity equations, 
which can be expressed in dimensionless form in terms of the stream function ~ and~ithe 
vortex ~ = r o t  V as follows; 

D2~= ~r sin O; 

2 [~," O0krsin0] O0 or , ~  s i n 0 = D  2(~rs in0) ,  

where D z 02 sinO 0 ( i 6 )  --ar z ~ r 2 00 ~ ' - ~  is the Stokes operator, 

radius, 0=a is the free-stream direction. Hence 

r = r / a  

V r -- ~ . / r 2  sin O, Vo = a ~ / r s i n  O ' a r  / 

is the dimensionless 

where V r and V 0 are the dimensionless radial and tangential stream velocity components. 

The boundary conditions on the surface are the following for a sphere with blowing: 

V r -- k, V e = 0 for r = 1 or 
a2~ I �9 q: = - / t '  ( ' 1 -  COS O); ~ = ~ / s l n  O, (1)  
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where k=V1/U~ is the blowing parameter, and 
sphere surface. 

The relationships 

V I is the radial blowing velocity on the 

for 0=0 V0=0; 8vrlO0=0; ~=0; ~=0; 

for 0=~ V0--0; 0Vr/O0=0; ~-~--2k; ~=0. 

are valid on the axis of symmetry. 

Unperturbed stream conditions are usually used as boundary conditions at an infinite 
distance from the sphere. 

There is apparently a unique numerical cosolution of the hydrodynamic problem for a 
sphere with blowing under the same assumptions in [3]. From that paper, the explicit dif- 
ference scheme was borrowed to compute the velocities at all points of the field, which must 
be known in order to solve the thermal problem. However, a refinement was introduced into 
the methodology of the solution. 

The fact is that it is impossible to give r-~oo in the numerical computations. Hence, 
it was assumed in [3] that the unperturbed stream conditions already hold on a finite, al- 
though significant, radius A. Such a hypothesis assumes the selection of A quite large, which 
increases the number of mesh nodes and the volume of the calculations needed. 

To eliminate the disadvantages mentioned, it is proposed to use the analytical solution 
for the Oseen domain obtained in [i] as the boundary conditions on a finite radius A: 

,, 4B "i c o s O ) { l _ e x p [  ARe* _}_ 0)]}; , - -  A~sin0. k (i --  COS O) -}- ~ { -- [ - - ~ ( l  COS 

= . ~  i -~- ~ sin 0 exp -- ---//7---- (2) 

Here B is a factor which was found in [i] by merging the expressions (2) with the so- 
lutions for the space near the sphere. 

It is admissible to consider that the same character of the flow is conserved for medium 
Reynolds numbers far from the sphere where the perturbations are weakened significantly, 
i.e., the boundary conditions on the radius A express (2) to the accuracy of the coefficient 
B. 

The values of B can be found by using the known integral relation 

Fi  = - -  .f [Li ( V jn j )  - -  II~jl dQ, (3) 
~2 

where F i is the aerodynamic drag, Li is the i-th component of the momentum, Vj, nj are, 
respectively, the j-th component of the velocity and the normal to ~ , and ~j is the stress 
tensor. 

Substituting (2) into (3) and integrating over an infinitely remote surface yields 

B = (k -[- C / 8 )  Re*2/4, 

where C t = ( C 1 + C ~ )  is the aerodynamic drag coefficient of a sphere with blowing defined by 
numerical integration of the friction (C 0 and pressure (C2) forces over the sphere surface. 
The corresponding components were calculated by means of the equations 

C l _ _ ~ S  .,t'~sin2OdO; C~=4 . t  "psinOc~ (4) 
0 0 
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where the pressure p was determined for each 0 by means of the vortex distribution law found 
over the surface of the sphere, 

0 

~ - ~ -  0 
0 

After the velocity field has been determined, the thermal problem is solved, i.e., the heat- 
balance equation, in the following dimensionless form: 

r'-' Or ~r -~r) r"sinO 00 - ~  -~-k - r ~  r 00]" (5) 

Here h = ( T - -  T ~ ) / ( T a - -  T~) is the dimensionless temperature (or concentration) I a is the 
sphere surface temperature, T~ is the free-stream temperature, Pe=2aU~/D; and D is the 
temperature conduction coefficient. 

The boundary conditions of the sphere surface are h = 1 for r = I; h = 0 as r-~oo 
in the unperturbed flow; and on the axis of symmetry 

dh/dO = O. ( 6 ) 

As in the flow problem, the radius is measured in the logarithmic scale Z = In r and 
(5) goes over into the following: 

~2h , Oh O~h Oh Pe (Tz Oh -4- Oh~ 
OZ ~ 7 0 Z - i - ~ - ~ + c t g 0 " ~ y = ~ - k , ' z ~  , Vo oo j e x p  Z. (7)  

As i n  t h e  p r e v i o u s  c a s e ,  t h e  a n a l y t i c a l  s o l u t i o n  o b t a i n e d  i n  [2] f o r  t h i s  d o m a i n  f o r  
s m a l l  v a l u e s  o f  t h e  R e y n o l d s  and  P d c l e t  n u m b e r s  i s  u s e d  a s  t h e  b o u n d a r y  c o n d i t i o n s  on  a ; 
l a r g e ,  b u t  f i n i t e  r a d i u s  A: 

_ _  [p~ ] h B, exp - -  ~ r (t  n- cos O) . 
- -  r 

The coefficient BI can be found by using the integral relation 

(8) 

T V j , . -  o-7]~= A ~--2 ~, - -  o-Tj~=~ 

which reflects the fact that the enthalpy flux through a spherical surface f12 with radius 
A in a gas volume without sources in a steady-state mode is equal to its flux standing 
off from the solid surface of a sphere ~. 

Substituting conditions (i), (6),and (8) into (9) and taking the unperturbed flux 
condition Fr~--cos 0, in a first approximation on the radius A, we obtain 

X exp - - - ~ y l ' ( l - i -  

c o s 0 e x p  - - ~ r ( i ~ c o s O  ---57 • 

"' ' I 2r O r ] r = t ' "  

• s in  OdOdr = 2~ (2B 1 - -  Pe k - -  Nu) ---- 0. 

Therefore 

B I _ _  Pc't '-:-Nu w h e r e  N u - ~  - -  i'[~ 
2 ' ~ k W l r = t  

s in 0d0. (10) 
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Fig. i Fig. 2 

The expression (8) with the value of BI from (i0) was taken as a more exact boundary 
condition on the radius A, where the Nusse!t criterion (Nu) was found by numerical integra- 
tion over the sphere surface and was refined in each interaction. 

The hydrodynamic and thermal problems were solved numerically by using the same mesh. 
An explicit difference scheme with a second-order approximation, analogous to that used in 
the hydrodynamic problem, was used for the thermal problem. If the magnitude of the spacing 
and its number in the Z = In r direction are denoted by ~ and i, and in the angle 0 by 
O and j, then the difference equation becomes 

I 4-}- ~ (2-- Pe V z [i, ]l exp Z [/]) ] 

[ 4 - -~ (2 - -Pe  Vz [i , ]l exP Z Ii])] 
+ h [ i - -  i ,  ]] . . . .  4~:-' -I- 

--]- h [ i , ] ~ - i ]  [4--' ~(2ctg0[/ ] - -40 ~Pe Vz[i , / ]ex p Z[i])]_~_ 

q- h it, j -- t l  4o,~ 
2] 
e~ = O. 

Taking account of (6), Eq. (7) for the axis of symmetry for both 0 = 0 and 9 = ~ becomes, 
after the indeterminacy therein has been resolved, 

02h , ~h 02h Pc V Oh expZ .  a z ~ . ' ~ - ~ - + 2 b - ~ = - :  2- z ~ z  

Having expressed the increment h by using a Taylor series, the boundary condition on 
the axis of symmetry can be represented with a second-order approximation as follows for 
O =0: 

h [!, o] t § ~ ]  - -  h [~, l]  - -  h [~ + L O] {4 -:- ~ (2 - -  

--  Pe Vz [i, O] exp Z [i])} ~ - -  h[i --  t ,  O] [4 --  ~ (2 --  

# 2  
--  Pe V z [i, O] exp Z [ij)} ~ = O. 

For 0 = v, when j = m, the equation has the same form but with the subscript j replaced 
by m instead of zero, and by m --i instead of i. 
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TABLE I 

Parameters 

C Jr 

C~ 
C ! 

C1 

C~ 
C 

l 

C1 

C.., 
C 

f 

C1 

02 
C ! 

Cl  

C~ 
C / 

C~ 
C 

f 

0,2 

0,~ 

18,366 
9,13~ 

27,500 

17,715 
9,051 

26,766 

17,i30 
8,978 

26,t08 

4,74i 
2,402 
7,143 

4,t37 
9 O ~,o9t 
6,528 

3,60i 
2,363 
5,964 

Re* 

10 

2,823 
t,482 
4,305 

2.'225 to15oo 
o,725 

t ,745 
1,503 
3,248 

t5  

2,118 
1,1'i2 
o,A~0 

~,529 
t,187 
2,717 

1,098 
1 212 
2,3t0 

20 

t,739 
0,954 
2,693 

t,t60 
t ,028 
2,t88 

0,772 
t ,07t 
t,843 

0,6 

0,8 

t6,560 
8,9t5 

25,475 

t6,007 
8,831 

24,838 

3,t32 
2,333 
5,465 

2,722 
2,303 
5,025 

t,369 
1,495 
2,864 

t,080 
t,484 
2,56r 

0,795 
1,223 
2,018 

0,58,q 
') 9 ,': 

1,813 

0,527 
1,093 
J,620 

0,378 
t,102 
t,480 

t,0 
t5,~71 
8,758 

24,229 

2,370 
2,269 
4,639 

0,862 
t,469 
2,331 

0,452 
t,224 
t,67(i 

(),287 
1,105 
1,390 

I from [1] 

19,0 
9,5 

28,5 

t8,4 
9,4 

27,8 

t7,8 
9,3 

27,t 

t7,2 
9,2 

26,4 

1[ (i 
9,1 

25,7 

16,0 
9,0 

25,0 

The numerical solution of all the equations was carried out by using an electronic 
computer. The mesh spacing @ in the angle e was 6 ~ and ~01, was selected in Z = in r, 
where it was assumed that In A~3 (A~20). Values of Re* and k were given, and the hydrodynamic 
problem was solved first. For k = 0, the known Stokes solution was taken as the initial ap- 
proximation and ~ and ~ were refined by iterations. Each solution obtained was used to de- 
termine the initial approximation for the next value of k by means of relations resulting 

from [I] 

~l~,~ ~ ~ - i  - ( ~ - 1  - k 2 ( ~  - -  cos  0) ,  ~ ~ ~,~_~. 

The selection of the iteration parameter for each value of Re* was carried out in con- 
formity with [4], The difference schemes were solved by the Zeidel' method [5]. Refinement 

of ~, ~ and h, as well as of Cf and Nu, terminated when the difference between the values of 
the first three functions became less than I0 -~ in successive iterations. 

After the velocity field has been determined for given Re* and k, the solution of 
the thermal problem was repeated for six values of the Prandtl criterion S = ~/D in 0.i 

steps, starting from 0.5 and going to i. 

The temperature field in a fixed medium when h = 0 on the radius A 

h = 

was taken as the initial approximation at k = 0. 

The temperature field found was taken as the initial approximation for the next k. 
The blowing parameter k was varied between 0 and i in 0.2 steps in the inner cycle, and 
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Fig. 3 Fig. 4 

Re* took the values I, 5, 10, 15, and 20 in the outer cycle~ 

Shown at the top in Fig. i are the streamlines for k = 0, and below for k = 1 for Re* = 
i (solid lines) and Re* = 20 (dashes); the @ correspond to curves 1-5 for the values $ = 
2, i, 0.5, 0.05; 0 and the values @ = 0, -0.05, -0.5, --i, --1.5, --1.95, and --2 correspond 
to the curves 6-12. Comparing the graphs shows how strongly blowing deforms the velocity 
field by forcing the free stream from the solid surface to the streamline ~ = O. 

Figure 2 illustrates the vortex distribution over the surface of the sphere for Re* = 1 
(dashes) and Re* = 20 (solid lines), where k = 0, 0.4, and 1 correspond to curves 1-3. Fig- 
ure 2, in which the same notation is used, shows the pressure distribution over the sphere 
surface (Re* = i on the left'and Re* = 20 on the right). 

The aerodynamic drag coefficient of a sphere with blowing as a function of Re* and k 
is shown in Table i. Given in the last column are values calculated on the basis of the 
analytical solution [I] : 

C 1 = ~ t ~ R e *  R e *  --7~ ; (ii) 

C., S " Re*~ .  : ~k~---; (I -- -~ Re* -- ~ / . (12) 

The good agreement between the results in the first and last columns indicates the 
satisfactory accuracy of the numerical solution and the possibility of using (ii) and (12) 
up to Re* = i, 

It follows from (4) and (ii) that CI diminishes for all values of Re* as k grows. 
Physically this is explained by the reduction of the velocity gradient at the sphere sur- 
face (Fig. i) and the diminution in the vorticity (Fig. 2)~ For small Re* the component 
C= also diminishes as k grows since the pressure on the frontal hemisphere is hence reduced 
more than on the root. However, for large Re*the forcing back of the free stream by the 
blowing substance is so great that restoration of the pressure behind the root is consider- 
ably worse. Hence, as Fig. 3 shows, as k grows the pressure on the frontal hemisphere is 
reduced, although less than at the root, and the component C2 grows. Nevertheless, the 
growth of C2 still is small in the region investigated and is cancelled completely by the 
reduction in C~, whereupon the quantity Cf decreases monotonically as k increases. 

Exhibited in Fig. 4 is the temperature field around the sphere in the case S = I for 
Re* = I (upper) and Re* = 20 (lower) for k = 0 (solid lines) and k = i (dashes). Curves 
2-6 refer to the values of h between 0.2 and 1.0 in 0.2 steps, and curve i to the value h=0.1. 

It is seen that similarly to the streamlines, the isotherms are also "forced back ~' 
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TABLE 2 

S k 

0,5 
0,6 
0,7 0 
0,8 
0,9 
1,0 

0,5 
0,6 
0,7 0,2 
0,8 
0,9 
i,O 

0,5 
0,6 
0,7 0,4 
0,8 
0,9 
t,0 

1 5 

2,148 2,666 
2,174 2,730 
2 900 2,81t 
21~29 2,883 
2,256 2,950 
2;282 3,0t2 

2,133 2,460 
'~,9- 2,437 . , 1 _ o  
2,t36 2,457 
2,t52 2,580 
2,t68 2,499 
2,184 2,5t5 

2,i09 2,202 
2,08312,156 
2,075t2;~35 
2,079 I 2,i17 
2,085]21097 
2,091 I 2,076 

R e *  

tO 15 

3~I00 3.438 
3,214 3,583 
3,325i3,716 
3,42513,836 
3,517 3,947 
3,595 41050 

2,596 2,674 
2,595 2,666 
2,613 2.666 
2,622 21656 
2,625 2,64i 
2,627 2,62t 

2,135 2,0t7 
2,067 I 1,922 
2,011 I i,834 
1,956 [ 1,749 
1,901 t,664 
1,846 1,581 

20 

3,725 
3,893 
4,044 
4,18t 
4,306 
4,422 

2,709 
2;688 
2,668 
2,6z/o 
2,606 
2,569 

1,879 i 
1,758 II 
1,6~51/ 
~,536 I/ 
1,4321[ 
~,334 II 

0,6 

0,8 

1,0 

i 5 iO 
/ 

2,076 t,977 ] ],730 
2,046 i,901 i,6i7 
2,0t9 i,845 t,518 
2,008 1,795 '1,423 
2,004 t,745 1,332 
2,000 i1695 1,252 

2,032 i,766 i,382 
t,995 1.667 t,240 
1,964 11586 .t,ii5 
i,948 t,5ii l,O01 
t,926 t,440 0,897 
t,919 1,370 0,800 

t,997 t,572 J,088 
i,945 [ i,453 (I,932 
i,907 [ i,352 0,798 
i,876 I i,260 o,682 
i,85i i,173 o,582 
i,829 i,091 (,496 

t 5  

1,r 
1,37,3 I 
1,204 I 

t ,05(~ 
9.8:~38 
tJ.T50 
0,!}52 
0,53:_', 
0 A 4 8  

0,725 
0,568 
0.-%i 
0,3{7 
~L270 
%210 

20 

t,242 
1,079 
0,936 
0,812 
0,704: 
0,611 

0,782 
0,62I 
0,493 
0,390 �9 
0,309 �9 
0,24s 

0,47i 
0,337 
0,240 
(t,t70 
0,t20 
0,086 

Nu ! ~ �9 iooai> i I 

i ~ X..' 

Z ' ~ i  i 

: \ i i : ' -  F ~ 

d: 62  ~20 8 

, i ! 

�9 I I" ' S  y 
-- § 

s 

P6 
l 

o 5 tO 

Fig. 5 Fig. 6 

from the sphere, whereupon the temperature or concentration gradient diminishes, especially 
at the root. The local Nusselt criteria, whose distribution along the sphere surface is 
shown in Fig. 5, also diminish correspondingly (here S = i, the dashed lines refer to Re* = 
I, the solid lines to Re* = 20, and k = 0, 0.4, and 1.0 correspond to curves 1-3). 

The average values of the Nusselt criterion (i0) also diminish with the increase in k, 
as is seen from Fig. 6 where its change as a function of Pe is shown for S = 0.5 (dashes) 
and S = 1.0 (solid lines). Values of k between 0 and 1.0 in 0.2 steps correspond to curves 
1-6. In the coordinates taken Nu depends comparatively weakly on the Prandtl criterion, at 
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least for large Pe and k. In Nu--Re* coordinates, the dependence on S is stronger, as 
can be traced from the Table 2 in which more detailed and exact values about the dependence 
of the average Nu on Re*, k, and S are presented. 
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